Development of Vaxfectin®-formulated HSV-2 Plasmid DNA Vaccines for Prophylactic and Therapeutic Applications

Sean M. Sullivan, PhD
Executive Director, Pharmaceutical Sciences and Process Development

2nd International Conference and Exhibition on Cell and Gene Therapy
Orlando, Florida
October 24, 2013
Herpes Simplex Virus Type 2 (HSV-2)

- Herpes virus family (dsDNA enveloped virus)
- Leading cause of genital herpes worldwide (STD)
- 1 in 6 infected in U.S. (40-60MM)
- 1 in 6 infected worldwide (>500M)
- Latent infection (nerves/ganglia)
 - 20% symptomatic patients with recurrences
- No licensed vaccine, only antiviral treatment
- HSV-2 costs in the U.S. estimated >$1B
- Unmet medical need
 - Prevention of infection (prophylactic vaccine)
 - Prevention of recurrence of lesions and transmission (therapeutic vaccine)
Epidemiology and Pathogenesis of Mucocutaneous HSV Infection

- **Initial infection:** Initial infection with retrograde transport of HSV to sensory nerve ganglia.
- **Transmission:** Mucosal viral shedding leads to sexual or perinatal transmission.
- **Latency:** Latency maintained by immune surveillance; immune control of virus also present at the mucosa.
- **Reactivation:** Reactivation from latency with mucosal shedding and lesions; virus travels anterograde to skin or mucosae.
HSV-2 pDNA-based Therapeutic Vaccine

- Selection of antigens
 - Envelope glycoprotein gD and tegument proteins VP11/12(UL46), VP13/14(UL47)
 - Based on human immunological response in HSV-2 infected subjects and preclinical animal models
 - Consensus protein sequences obtained by sequencing HSV-2 clinical isolates

- Antigen expression plasmids
 - Expression cassette optimized for maximal gene expression
 - Gene sequences codon-optimized for maximal protein translation

- Adjuvant
 - Vaxfectin® cationic lipid-based adjuvant
 - Extensive preclinical database and successful Phase 1 clinical trials showing favorable safety profile, and humoral and cell-mediated immune responses
HSV-2 Antigen Selection
Rationale for Antigen Targets

UL46 and UL47
- Abundant proteins (>1,000 copies) in virion
 - CD8+ targets prior to TAP shutdown by ICP47
 - DCs can cross present tegument proteins to CD8+ T cells
- Prevalent recognition by IFNγ-CD8+ human T cells
- CD4+ and CD8+ epitopes identified
- Skin-homing (CLA+) T cells found in lesions
- CD8+ T cells found at dermal-epidermal junction near nerves

Glycoprotein D (US6)
- Therapeutic POC in humans (Straus, Lancet 1994)
- Therapeutic POC in guinea pigs (Vical/UTMB)
- Prevalent recognition by IFNγ-CD4+ and CD8+ human T cells
- CD4+ and CD8+ epitopes identified
Mice received 100 μg of plasmid encoding UL46, UL47, or gD at 0, 2, 4 weeks IFN-γ ELISPOT assay performed 2-3 weeks later
Vaxfectin® Adjuvant

Cationic Lipid
(±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(cis-9-tetradeceneyloxy)-1-propanaminium bromide

GAP-DMORIE

DPyPE

Cationic Liposomes

1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine

Co-Lipid

pDNA/lipid Complex

Vaxfectin® Profile
- Two-lipid mixture
- Forms microparticles
- Increases immune responses and protection in animal models
- Dose sparing
- Scaleable cGMP manufacturing
- Simple formulation
- Patented technology
H5 DNA Vaccine Phase 1 Trials

- Safety & immunogenicity endpoints
- Double-blind placebo-controlled
- 103 healthy subjects 18-45 years of age
- IM injections on Days 0 and 21
- All DNA vaccines formulated with Vaxfectin®

<table>
<thead>
<tr>
<th>Needle</th>
<th>N=56</th>
<th>Needle-free</th>
<th>N=47</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mg Trivalent (0.03 mg H5 DNA)</td>
<td>6</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>0.5 mg Trivalent (0.17 mg H5 DNA)</td>
<td>6</td>
<td>0.5 mg H5 Monovalent</td>
<td>6</td>
</tr>
<tr>
<td>1 mg Trivalent (0.3 mg H5 DNA)</td>
<td>15</td>
<td>1 mg H5 Monovalent</td>
<td>15</td>
</tr>
<tr>
<td>1 mg Monovalent</td>
<td>15</td>
<td>1 mg Trivalent (0.3 mg H5 DNA)</td>
<td>15</td>
</tr>
<tr>
<td>PBS</td>
<td>14</td>
<td>PBS</td>
<td>11</td>
</tr>
</tbody>
</table>
Antibody and T-cell Responses to Influenza H5 DNA Vaccine

HI antibody titers ≥40 in 47%-67%
- In range of protein vaccines

H5 IFN-γ T cells in 75%-100%

Smith et al., Vaccine 2010
Mouse Challenge Model

Vaccination
- Route: Intramuscular +/- Vaxfectin® (N = 10/group)

Challenge
- Week 6: Intramuscular +/− Vaxfectin® (N = 10/group)
 - HSV-2 strain 186
 - 50 x LD50 (1.5 x 10^4 PFU)

Ganglia Dissection
- Week 18

Week 0
- Vaccination
- Challenge
- Ganglia Dissection

Week 2
- Vaccination
- Challenge
- Ganglia Dissection

Week 4
- Vaccination
- Challenge
- Ganglia Dissection

Week 6
- Vaccination
- Challenge
- Ganglia Dissection

Week 6-8
- Vaccination
- Challenge
- Ganglia Dissection

Week 18
- Vaccination
- Challenge
- Ganglia Dissection

Serum for antibody by ELISA

Daily vaginal swab for HSV-2 qPCR

HSV-2 qPCR
Impact of HSV-2 Vaccine on Antibody Titers, Primary Infection and Latency

Anti-gD Antibody Titers
- PBS-S vs Vax-S: p = 0.034
- PBS-FL vs Vax-FL: p = 0.026

Vaginal HSV-2 DNA Copy Number
- Day 5 vaginal qPCR copies
 - PBS-S vs Vax-S: *p = 0.024
 - PBS-FL vs Vax-FL: *p = 0.019
- Day 90 DRG qPCR copies
 - PBS-FL vs Vax-FL: p = 0.007

Week 8 gD ELISA GMT t-test
- PBS-S vs Vax-S
- PBS-FL vs Vax-FL

Day 5 vaginal qPCR copies
Wilcoxon rank sum test

Day 90 DRG qPCR copies
Wilcoxon rank sum test
Summary of Murine Studies

- Vaxfectin® increased immunogenicity of gD pDNA
 - 5-6 fold increase in antibody titers compared to pDNA alone
- Vaxfectin®-formulated plasmid DNA decreased vaginal HSV-2 copy number following viral challenge
 - Vaxfectin®-formulated pDNA expressing full length or secreted gD reduced vaginal HSV-2 copy number compared to gD pDNA alone
 - pDNA expressing full length gD resulted in lower vaginal HSV-2 copy number than pDNA expressing secreted gD
- Vaxfectin®-formulated gD pDNA reduced viral latency
 - 60% of mice had undetectable HSV-2 viral genomes in Vaxfectin®/gD pDNA treatment group
Guinea Pig Prophylactic Study Design

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Vaccine</th>
<th>pDNA dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>15</td>
<td>PBS</td>
<td>NA</td>
</tr>
<tr>
<td>gD +Vaxfectin®</td>
<td>15</td>
<td>FL-gD pDNA Backbone</td>
<td>300 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 µg</td>
</tr>
<tr>
<td>gD/UL46/UL47 +Vaxfectin®</td>
<td>15</td>
<td>FL-gD UL46/UL47</td>
<td>300 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 µg/150 µg</td>
</tr>
</tbody>
</table>

Primary Infection

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>21</th>
<th>42</th>
<th>63</th>
<th>78</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Vaccinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV-2 Strain MS (10^6 PFU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lesion Recurrence

Days 112-126 Assayed for Viral Shedding
HSV-2 Neutralizing Antibody Titers

<table>
<thead>
<tr>
<th>Group</th>
<th>Neutralizing Ab titer</th>
<th>Post 2nd immunization</th>
<th>Post 3rd immunization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td><1:10</td>
<td><1:10</td>
<td></td>
</tr>
<tr>
<td>gD</td>
<td>1:2560</td>
<td>1:10240</td>
<td></td>
</tr>
<tr>
<td>gD/UL46/UL47</td>
<td>1:1280</td>
<td>1:5120</td>
<td></td>
</tr>
</tbody>
</table>
HSV-2 Primary and Recurrent Disease

<table>
<thead>
<tr>
<th>Group</th>
<th>Primary Disease</th>
<th>Recurrent Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidence</td>
<td>Severity<sup>a</sup>, mean ± SD</td>
</tr>
<tr>
<td>Naïve</td>
<td>15/15</td>
<td>9.3 ± 4.7</td>
</tr>
<tr>
<td>gD</td>
<td>0/15<sup>c</sup></td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>gD/UL46/UL47</td>
<td>0/15<sup>c</sup></td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

^a Severity defined as cumulative daily lesion score
^b Frequency defined as recurrent lesion days between days 15-63 post inoculation
^c p<0.001 compared to naïve
Guinea pigs were vaccinated three times three weeks apart and infected with 10^6 pfus of HSV-2 MS strain 3 weeks after last vaccination. Vaginal swabs were taken and assayed for viral genomes (GE) by qPCR on days 1-5 postinfection.
HSV-2 Shedding in Recurrent Disease

<table>
<thead>
<tr>
<th>Group</th>
<th>Incidence</th>
<th>Frequency<sup>a</sup>, mean ± SD</th>
<th>Quantity<sup>b</sup>, log<sub>10</sub> GE/mL (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td>9/11</td>
<td>2.8 ± 1.4</td>
<td>4.0 ± 0.9</td>
</tr>
<tr>
<td>gD</td>
<td>6/15<sup>c</sup></td>
<td>2.5 ± 1.0</td>
<td>4.9 ± 0.9</td>
</tr>
<tr>
<td>gD/UL46/UL47</td>
<td>6/15<sup>c</sup></td>
<td>1.8 ± 1.3</td>
<td>3.6 ± 1.7</td>
</tr>
</tbody>
</table>

^a Frequency is number of days of vial shedding between days calculated using only animals experiencing shedding last 14 days of the study (days 112-126)

^b Quantity is amount of virus shed per event

^c P=0.05 compared to naïve
HSV-2 DRG Load

<table>
<thead>
<tr>
<th>Group</th>
<th>Dorsal Root Ganglia virus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidence<sup>a</sup></td>
<td>Virus load, \log_{10} GE/mL (mean ± SD)</td>
</tr>
<tr>
<td>Naïve</td>
<td>10/10</td>
<td>3.3 ± 0.5</td>
</tr>
<tr>
<td>gD</td>
<td>5/15<sup>b</sup></td>
<td>1.9 ± 0.6<sup>b</sup></td>
</tr>
<tr>
<td>gD/UL46/UL47</td>
<td>1/15<sup>c</sup></td>
<td>1.6</td>
</tr>
</tbody>
</table>

^a Incidence is defined as the number of animals in which HSV-2 DNA was detectable from ganglia/number tested

^b $p<0.001$ compared to naïve

^c $p<0.0001$ compared to naïve
Conclusions from Guinea Pig Prophylactic Study

- gD monovalent and gD/UL46/UL47 trivalent produced approximately equivalent neutralizing antibody titers
- Monovalent and trivalent vaccines reduced viral replication by >2 logs
- Monovalent and trivalent vaccines reduced latent infection with the trivalent vaccine showing greater reduction in viral latency
Guinea Pig Therapeutic Study Design

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Vaccine</th>
<th>pDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>gD/UL46/UL47 + Vaxfectin®</td>
<td>14</td>
<td>FL-gD UL46/UL47</td>
<td>300 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150 µg/150 µg</td>
</tr>
<tr>
<td>UL46/UL47 + Vaxfectin®</td>
<td>14</td>
<td>UL46/UL47 pDNA Backbone</td>
<td>150 µg/150 µg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 µg</td>
</tr>
<tr>
<td>Naïve</td>
<td>14</td>
<td>PBS</td>
<td>NA</td>
</tr>
</tbody>
</table>

Primary Infection
- HSV-2 Strain MS (10⁶ PFU)

Lesion Recurrence
- DNA Vaccinations
- Days 42-63 Assayed for Viral Shedding
Reduction in Frequency of Recurrent Lesions in Vaccinated Guinea Pigs

60 guinea pigs infected with 10^6 pfu HSV-2 strain MS on day 0; 15 days after primary infections resolved, guinea pigs randomized into treatment groups.

Guinea pigs monitored daily for recurrent lesions and score; vaginal swabs taken last 14 days and assayed for HSV-2 DNA by PCR.
Reduction of Viral Shedding in Vaccinated Guinea Pigs

<table>
<thead>
<tr>
<th>Group</th>
<th>Animals Shedding Virus</th>
<th>Days of Virus Shedding<sup>a</sup></th>
<th>Virus Shed (Log<sub>10</sub> HSV-2 Genomes)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>gD/UL46/47</td>
<td>9/14 (64%)</td>
<td>1.07 ± 0.27<sup>c</sup></td>
<td>2.45 ± 0.20</td>
</tr>
<tr>
<td>Naive</td>
<td>12/14 (86%)</td>
<td>2.29 ± 0.41</td>
<td>2.91 ± 0.19</td>
</tr>
</tbody>
</table>

^a Mean (± SE) number of shedding days/animal over the last 14 day period

^b Mean (± SE) HSV-2 genome copies

^c p < 0.05 compared to control by t-test
Conclusions from Guinea Pig Therapeutic Studies

- gD/UL46/UL47 trivalent vaccine significantly reduced lesion recurrence compared to naïve control
- Trivalent vaccine reduced viral shedding
- UL46/UL47 bivalent vaccine did not significantly reduce lesion recurrence compared to naïve control showing the importance of including gD pDNA in the vaccine
Clinical Development

- FDA Pre-IND meeting
- cGMP manufacture of each plasmid DNA
- Manufacture single vial drug products
- Rabbit repeat dose toxicology study (shown to be well tolerated)
- Rabbit biodistribution study (shown to have acceptable clearance rate)
- Submit IND
HSV-2 Therapeutic Vaccine
Phase 1/2 Trial Design Overview

- Placebo-controlled trial in ~150 HSV-2+ adults
 - History of symptomatic genital herpes lesions
- Regimen
 - 2 months pre-vaccination shedding data
 - 3 vaccinations at monthly intervals
 - 2 months post-vaccination shedding data
- Primary endpoints
 - Safety and tolerability in HSV-2+ healthy subjects
 - Comparison of HSV-2 shedding rate in each subject before and after
- Planned initiation late 2013