Development of VL-2397 as an Antifungal Drug Candidate to Treat Invasive Fungal Infections
June 03, 2017
Sean M. Sullivan, Ph.D.
Senior Executive Director
Pharmaceutical Sciences
Safe Harbor

This presentation contains forward-looking statements that are subject to risks and uncertainties that could cause actual results to differ materially from those set forth in the forward-looking statements, including risks related to whether any product candidates will be shown to be safe and efficacious in clinical trials and the other risks set forth in the company’s Annual Report on Form 10-K, Quarterly Reports on Form 10-Q and other filings with the Securities and Exchange Commission. Actual results may differ materially from those projected. These forward-looking statements represent the company’s judgment as of the date of this presentation. The company disclaims, however, any intent or obligation to update these forward-looking statements.
VL-2397 for Invasive Fungal Infections

| PRODUCT CANDIDATE | Antifungal compound with a novel mechanism of action
<table>
<thead>
<tr>
<th></th>
<th>In-licensed from Astellas Pharma Inc.</th>
</tr>
</thead>
</table>
| TARGET INDICATIONS| Treatment of invasive aspergillosis
| | Treatment of infections caused by other pathogenic fungi |
| DEVELOPMENT STATUS| QIDP, Fast Track and orphan designations for treatment of invasive pulmonary aspergillosis
| | Dosing completed in Phase 1 trial in healthy volunteers; Phase 2 in invasive aspergillosis planned to be initiated in 4Q 2017 |
Invasive Aspergillosis (IA)

- More than 200,000 diagnoses of IA annually worldwide\(^1\)
 - Predominantly occurs in immunocompromised patients

- High unmet medical need
 - \(~50\%\) mortality in high risk groups\(^2\)
 - Potential drug interactions, toxicity with current antifungals
 - Increasing resistance
 - Adverse events and drug intolerance to existing antifungals

- Only 1 new therapy class introduced in past 30 years

Sources: \(^1\) Brown, SciTranslMed, 2012; \(^2\) Baddley, CID, 2010
VL-2397 Characteristics

- Resembles the siderophore ferrichrome
- Isolated from fungus *Acremonium persicinium*
 - Produced by fungal fermentation
 - Amino Acid Sequence: Phe-Leu-Asn-Orn-Orn-Orn • (Al$^{3+}$)
- Aluminum (Al$^{3+}$) is chelated by hydroximated ornithines
Spectrum of In Vitro Antifungal Activity

Susceptible fungal pathogens (MIC ≤ 2)

<table>
<thead>
<tr>
<th>Fungal Species</th>
<th>Affected Patient Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus species</td>
<td>A. fumigatus, A. terreus, A. flavus, A. nidulans</td>
</tr>
<tr>
<td></td>
<td>Immunosuppressed, older patients</td>
</tr>
<tr>
<td>Candida species</td>
<td>C. glabrata, C. kefyr</td>
</tr>
<tr>
<td></td>
<td>UTI, intra-abdominal infections, MDR infections</td>
</tr>
<tr>
<td>Other yeast species</td>
<td>Cryptococcus neoformans, Trichosporon asahii</td>
</tr>
<tr>
<td></td>
<td>HIV, Africa, South East Asia</td>
</tr>
</tbody>
</table>

Assayed in inactivated human serum-containing media
MIC, minimal inhibitory concentration
VL-2397: A Novel Mechanism of Antifungal Action

- **VL-2397** represents a potentially new class of antifungal agents.
- **Active transport into** *A. fumigatus* occurs via **Sit1**
 - Mammalian cells lack **Sit1** transporter.
- **Activity results from effect on an intracellular target**

Plasma Membrane

- **Azoles:**
 - Ergosterol synthesis inhibitor
- **Polyenes:**
 - Ergosterol binding; membrane disruption

Cell Wall

- **Echinocandins:**
 - β-glucan synthesis inhibitor

Intracellular Target

- **Sit1**
- **VL-2397**

Adapted from Denning Science 2015
VL-2397 Antifungal Activity Dependence on Siderophore Iron Transporter 1 (Sit1)

<table>
<thead>
<tr>
<th>A. fumigatus Strain</th>
<th>Property</th>
<th>VL-2397 CSLI MIC (mg/mL)</th>
<th>Voriconazole CSLI MIC (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP1305</td>
<td>Parent wild type strain</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>RSV-1</td>
<td>UV-induced Sit1 mutant</td>
<td>>16</td>
<td>0.25</td>
</tr>
<tr>
<td>RSS</td>
<td>RSV-1 with Sit1 plasmid</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>RSP</td>
<td>RSV-1 with empty plasmid</td>
<td>>16</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- **RSV-1**: UV-induced nonfunctional Sit1 mutant (C1437A)
 - Lacks VL-2397 uptake
 - Insensitive to VL-2397 antifungal activity

- **RSS**: Sit1 transformation of RSV-1
 - Restores VL-2397 uptake
 - Restores sensitivity to VL-2397
Murine Invasive Pulmonary Aspergillosis (IPA) Survival Model

-4 0 5 10 (day)

Days -4, +1: Neutropenic mice (cyclophosphamide 200 mg/kg ip)

Day 0: Intratracheal infection with *A. fumigatus* (azole-sensitive or azole-resistant)

Antifungal treatment

Mice dosed on Days +1, +2, +3 VL-2397 (sc) BID, PSCZ (po) BID, N=10/dose

Mouse: Male ICR (5wk)
Organism: *A. fumigatus* 20030 3.83 × 10^6 conidia/mouse
A. fumigatus 25001 (azole resistant) 2.0×10^6 conidia/mouse
VL-2397 Efficacy in Murine IPA Survival Model

- All untreated infected mice died by day 5
- VL-2397 1mg/kg BID yielded 30% survival
- VL-2397 2 mg/kg BID and Posaconazole 10mg/kg BID yielded 40% survival
- VL-2397 (4 and 8 mg/kg BID) yielded 100% survival

Source: Nakamura et al. Poster F-1591 at ICAAC 2014
VL-2397 Reduction in Lung Fungal Burden in Murine IPA Model

- Dosed for 2 days BID, lungs harvested day 3, N=5/treatment group
- VL-2397 yielded a dose dependent reduction in lung fungal burden (LFB)
- VL-2397 at 4 and 8 mg/kg BID yielded 1.4 and 1.5 log reduction in LFB
- Posaconazole yielded a 0.3 log reduction in LFB

Source: Nakamura et al. Poster F-1591 at ICAAC 2014
Comparison of VL-2397 with posaconazole for the treatment of IPA model of azole-resistant *A. fumigatus* 25001

- All control and posaconazole-treated mice died by Day 6
- VL-2397 at 4 and 8 mg/kg BID yielded 100% survival to day 10

Source: Nakamura et al. Poster F-1591 at ICAAC 2014
Identification of VL-2397 Major Serum Binding Protein

In Vitro Bound Fraction Ratios (%) of $[^{14}C]VL-2397$ to Human Plasma Proteins

<table>
<thead>
<tr>
<th>Serum Protein</th>
<th>1μg/mL</th>
<th>10μg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human serum albumin</td>
<td>31.0±0.7</td>
<td>9.4±0.5</td>
</tr>
<tr>
<td>α_1-Acid glycoprotein</td>
<td>5.4±1.4</td>
<td>4.9±0.3</td>
</tr>
<tr>
<td>IgG</td>
<td>2.7±0.3</td>
<td>0.5±0.8</td>
</tr>
<tr>
<td>LDL</td>
<td>4.6±0.3</td>
<td>3.4±0.4</td>
</tr>
<tr>
<td>HDL</td>
<td>6.4±0.3</td>
<td>5.2±0.6</td>
</tr>
<tr>
<td>Zinc-α_2-glycoprotein (ZAG)</td>
<td>99.6±0.02</td>
<td>30.4±0.5</td>
</tr>
</tbody>
</table>

Serum Protein Binding Summary

- Binding of VL-2397 to ZAG is saturable with 99.6% of drug being bound at 1 μg/mL and 30.4% of drug being bound at 10 μg/mL
- Concentration-dependent saturation of ZAG protein binding was consistent with the saturation of human serum protein binding
- Results strongly identified ZAG to be the major VL-2397 serum binding protein
VL-2397 Phase 1 Clinical Trial Design

- First-in-human, randomized, double-blind, placebo controlled study
- Total enrollment 96 healthy subjects-ages 19 to 55
- Drug administered intravenously through peripheral IV catheter or PICC line
- Eight subjects randomized 3:1 for each cohort
 - Seven single ascending dose (SAD) cohorts: 3mg → 1200 mg
 - Three 7-day multiple ascending dose (MAD) cohorts: 300, 600 and 1200mg
 - 28-day MAD cohort: 300 mg/8hr/7days; 600 mg/day for 21 days
- Safety review committee (SRC) reviewed cohort-specific safety data prior to advice on dose escalation
- Clinical Endpoints: Safety and Pharmacokinetic Parameters
VL-2397 Phase 1 Safety Summary

- The SRC did not identify any overall concerns with the safety profile
- All cohorts were fully enrolled and all subjects completed safety follow up
- No grade 4 adverse events or serious adverse events related to drug were observed
- Most common AEs primarily related to infusion sites
 - No differences between active and placebo groups
 - Replacement of IV peripheral catheter with PICC for Cohort 11 reduced infusion site AEs
- The safety and tolerability profile across all doses and dosing regimens support further clinical evaluation in IA patients

Poster Presentation Friday-192 “Phase 1 Safety and Pharmacokinetics Study of VL-2397, a Novel Antifungal Agent”
VL-2397 300 mg Dose PK Profile

Summary:
- Concentration curves for each subject receiving one or more 300-mg dose
- Peak concentrations are all very similar
- Supports lack of VL-2397 accumulation after seven daily infusions of 300 mg at 24-hour or 8-hour intervals

Occasion 1 is Day 1
Occasion 2 is Day 8
Cohort 5 received a single 300 mg dose
Cohort 8 received 300 mg q24h
Cohort 11 received 300 mg q8h
Summary:

- Concentration curves for each subject receiving one or more 600-mg dose are very similar within and across cohorts.
- Occasion 1 is Day 1 (Cohorts 6 and 9)
 - Occasion 2 is Day 7 (Cohort 9)
 - Occasion 3 is Day 28 (Cohort 11)
Phase 1 PK Summary

- **Low AUC\textsubscript{24} and C\textsubscript{max} variability within, across cohorts**
 - Reproducible drug concentrations among subjects receiving the same doses once or multiple administrations

- **Nonlinear proportional increase in AUC\textsubscript{24} and C\textsubscript{max}**
 - Drug is being cleared during increased infusion timeframe
 - No apparent drug accumulation with multiple doses

- **Long circulation half-life of bound drug**
 - Slow clearance phase due to serum protein binding
FRIDAY – 190
L.L. Kovanda, S.M. Sullivan, L.R. Smith, P. Bonate, W.W. Hope
“Population Pharmacokinetic Modeling of VL-2397, a Novel Systemic Antifungal Agent: Analysis of a Single and Multiple Dose Phase 1 Study”

FRIDAY – 192
“Phase 1 Safety and Pharmacokinetics Study of VL-2397, a Novel Antifungal Agent”

SATURDAY – 235
S.M. Sullivan, I. Nakamura, M. Ohbuchi, S. Matsumoto, L. Smith
“Characterization of Potential Drug Interactions and Off-Target Activities of VL-2397, a Novel Antifungal Agent against Invasive Aspergillosis”

SATURDAY – 239
“The Novel Antifungal VL-2397 Demonstrates Efficacy in an In Vivo Model of Invasive Candidiasis Caused by Wild-Type and Multi-Drug Resistant Candida glabrata”
Invasive aspergillosis (IA) is the initial focus of the VL-2397 development program

VL-2397 antifungal activity dependent on Sit1

In vivo proof of concept demonstrated in azole sensitive and azole resistant murine IPA models

Phase 1 clinical trial showed
- VL-2397 is well tolerated up to 1200 mg dose
- No accumulation observed up for 7 day daily dose of 1200 mg or 600 mg daily dose administered for 21 days

VL-2397 appears to be safe and well tolerated with favorable plasma PK profiles in healthy subjects

Phase 2 trial in IA planned for initiation in 4Q2017
Acknowledgements

Vical Incorporated
L. Smith
M. Mammen
P. Resch
C. Fisher
A. Hopkins
F. Hughes
L. Montano
D. Rusalov

Consultants/Collaborators
H. Schlamm, HTS Pharma Consulting
C. Rubino, Institute for Clinical Pharmacodynamics
D. Armas, Celerion
T. Patterson, UTHSC, San Antonio
N. Wiederhold, UTHSC, San Antonio
M. Hodges, Independent Consultant

Astellas Pharma, Japan
I. Nakamura
K. Ohsumi
K. Yoshikawa
T. Masaki
S. Takase
M. Hashimoto
A. Fujie
T. Nakai
S. Nishide

Astellas Pharma, Northbrook, IL
L. Kovanda

S. Akamatsu
S. Uchida
K. Maki
Y. Koide
H. Mitori
T. Noto
S. Matsumoto
S. Takeda
T. Okuzono