BLU-5937 Update and Chronic Cough Key Opinion Leader Event

September 20, 2017
Forward Looking Statements

Certain statements contained in this news release, other than statements of fact that are independently verifiable at the date hereof, may constitute “forward-looking statements” within the meaning of Canadian securities legislation and regulations. Such statements, based as they are on the current expectations of management, inherently involve numerous important risks, uncertainties and assumptions, known and unknown, many of which are beyond BELLUS Health Inc.’s control. Such risks factors include but are not limited to: the ability to obtain financing, the impact of general economic conditions, general conditions in the pharmaceutical industry, changes in the regulatory environment in the jurisdictions in which BELLUS Health Inc. does business, stock market volatility, fluctuations in costs, changes to the competitive environment due to consolidation, achievement of forecasted burn rate, potential payments/outcomes in relation to indemnity agreements and contingent value rights, achievement of forecasted pre-clinical and clinical trial milestones and that actual results may vary once the final and quality-controlled verification of data and analyses has been completed. In addition, the length of BELLUS Health Inc.’s drug candidates development process, their market size and commercial value, as well as the sharing of proceeds between BELLUS Health Inc. and its potential partners from potential future revenues, if any, are dependent upon a number of factors. Consequently, actual future results and events may differ materially from the anticipated results and events expressed in the forward-looking statements. The Company believes that expectations represented by forward-looking statements are reasonable, yet there can be no assurance that such expectations will prove to be correct. The reader should not place undue reliance, if any, on any forward-looking statements included in this news release. These forward-looking statements speak only as of the date made, and BELLUS Health Inc. is under no obligation and disavows any intention to update publicly or revise such statements as a result of any new information, future event, circumstances or otherwise, unless required by applicable legislation or regulation. Please see BELLUS Health Inc.’s public filings with the Canadian securities regulatory authorities, including the Annual Information Form, for further risk factors that might affect BELLUS Health Inc. and its business.
BLU-5937 Overview

BLU-5937 Background
- Developed at AstraZeneca in P2X3 antagonist discovery program, then NEOMED Institute
- Global rights licensed by BELLUS in February 2017

P2X3: validated target for chronic cough
- Merck acquired Afferent Pharma’s P2X3 antagonist program in 2016 for US$500M based on positive Phase 2 data
- Problematic side effect profile: 80% of patients experienced taste disturbance

BLU-5937: Potentially best-in-class P2X3 antagonist
- Potential for differentiated product profile with improved efficacy and reduced/no taste disturbance
- Clear, efficient path to demonstrate superiority
A Review of Chronic Cough
Prof Jacky A. Smith MB, ChB, FRCP, PhD
University of Manchester
Chronic Cough

Characteristics

Cough lasting ≥ 8 weeks, associated with:

- Pulmonary diseases (asthma, COPD, IPF)
- Extra-pulmonary disorders (allergic rhinitis, gastro-oesophageal reflux)
- Side effect of certain drugs
- No identifiable cause

Cough frequency can be high (10-100s times per hour) with lengthy duration (months or years)
Prevalence of Chronic Cough

UK Postal Questionnaire Survey

Danish Population Based Cohort

Ford et al Thorax 2006;61;975-979

Colak et al Chest 2017;152:563-573
Major Impact on Patients with Refractory / Unexplained Chronic Cough

Physical complications
- Fatigue
- Sleep deprivation
- Vomiting
- Incontinence
- Headache
- Chest pain
- Rib fracture

Social complications
- Interference with lifestyle, work & leisure
- Difficulty conversing
- Embarrassment of coughing in public

Psychosocial complications
- Anxiety
- Anger
- Depression
- Distress

Significant disruption in day to day life for chronic cough patients
Few Treatment Options for Chronic Refractory/Unexplained Cough

<table>
<thead>
<tr>
<th>Opioids</th>
<th>Benzonatate</th>
<th>Dextromethorphan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be efficacious</td>
<td>Anesthetize the stretch receptors in the lungs</td>
<td>Key ingredient in OTC cough suppressants</td>
</tr>
<tr>
<td>Limited use due to side</td>
<td>Temporary relief</td>
<td>Limited efficacy</td>
</tr>
<tr>
<td>effects and potential for</td>
<td>Potential serious side effects</td>
<td></td>
</tr>
<tr>
<td>addiction</td>
<td>if capsule broken</td>
<td></td>
</tr>
</tbody>
</table>

Gabapentin/pregabalin

- Neuromodulators with variable efficacy and significant CNS side effects

Speech Therapy

- Has shown some efficacy especially in combination with pharmacotherapy

Significant need for efficacious chronic cough therapy that is non-narcotic and non-sedating
P2X3 Receptor: Rational Target for Refractory/Unexplained Chronic Cough

Sensory stimuli: heat, cold, acid, chillis, smoke, and chemicals.

Larynx, Trachea, & Bronchus: ATP released due to sensory stimuli.

Brain: P2X3 receptor activated by ATP.

Jugular: Vagus (X) nerve pathway to the brain.

Cough: P2X2 vs. P2X3 expression adapted from Kwong et al. 2008 AJP Lung cell Mol Physiol 295 L858-65

Lung cell Mol Physiol 295 L858-65
Targeting P2X3 is an efficacious strategy for treating chronic cough.

Merck’s MK-7264 - P2X3 Antagonist

Reduction in Awake Cough Frequency
(from Baseline Compared to Placebo)

- **Placebo**
- **7.5 mg**
- **20 mg**
- **50 mg**

* p<0.05 vs. placebo

Phase IIb (253 patients; 12 week study) showed reduction in awake cough frequency of **84%** vs baseline **37%** vs placebo at 50mg dose

MK-7264: Significant Adverse Taste Effect

Taste effect likely due to low selectivity for P2X3; MK-7264 also inhibiting P2X2/3, particularly at 50mg dose

At therapeutic dose (50 mg BID):

- ~80% of patients reported taste alteration
- ~40% of patients reported very/extremely bothersome taste effect

Clinical Studies in Chronic Cough

<table>
<thead>
<tr>
<th>Design</th>
<th>Endpoints</th>
<th>Regulatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossover design is very efficient for Phase 2 proof of concept</td>
<td>Reduction in awake cough frequency as measured by cough monitor</td>
<td>At least 2 large Phase 3 studies required for approval</td>
</tr>
<tr>
<td>Crossover design requires limited number of patients and short duration with objective cough monitoring</td>
<td>Good correlation between cough frequency and patient reported measures</td>
<td>Primary endpoint likely to be cough frequency reduction using validated cough recorder</td>
</tr>
<tr>
<td>Crossover design results have been confirmed in longer term study</td>
<td>Potential for important placebo effect in parallel group studies</td>
<td></td>
</tr>
</tbody>
</table>

Recent learnings in clinical studies have provided clear path for development of chronic cough drugs
TRP modulators

- Main target (TRPV1) has shown serious toxicity issues with first compounds
- Two recent Phase 2 trials in chronic cough patients showed effect on cough challenge but not cough frequency

NK1 antagonists

- Repurposed class initially developed for depression
- Also target afferent nerve signaling especially at first synapse
- Limited clinical validation in chronic cough

P2X3 antagonists

- Drug class inhibiting afferent pathway signals from respiratory tract
- Most promising and competitive novel class of antitussive medicine

nAChR modulation

- CNS acting modulators, could inhibit cough signal processing in the brain
- Limited mechanistic characterization in humans
BLU-5937 for Chronic Cough
Dr. Denis Garceau
BELLUS Health
Strong drug candidate profile with potential to be best in P2X3 class

- Twice Daily Oral Dosing Expected
- High Potency and Selectivity for P2X3
- No safety findings of concern
- Broad and comprehensive IP to 2034
- Targeting ~2.7M US Patients
P2X3 and P2X2/3 Roles in Cough and Taste

ATP-gated ion channels that transmit sensory signals, function in two predominant trimer structures:

- **P2X3 homotrimers** have primary role in **cough reflex**
- **P2X2/3 heterotrimers** have major role in **taste**

Target P2X3 to reduce cough; avoid P2X2/3 to maintain taste
Potency, Selectivity for Human hP2X3 vs. hP2X2/3

BLU-5937 is

10x more potent
>1000x more selective (vs P2X2/3)

than MK-7264 for the human P2X3 receptor

<table>
<thead>
<tr>
<th></th>
<th>BLU-5937</th>
<th>MK-7264</th>
</tr>
</thead>
<tbody>
<tr>
<td>hP2X3 (IC(_{50}))</td>
<td>Low nM</td>
<td>Mid nM</td>
</tr>
<tr>
<td>hP2X2/3 (IC(_{50}))</td>
<td>Mid µM</td>
<td>High nM</td>
</tr>
</tbody>
</table>

Fluorescent calcium flux assay, using Fluo-8 kit and 3 µM α,β Me AT, performed in HEK293 cells stably expressing P2X3 and P2X2/3; 12 concentrations of each compound tested.

BLU-5937: potential to inhibit cough with little/no taste disturbance
Preclinical Efficacy: Cough Response in Guinea Pig

BLU-5937 inhibits cough dose dependently and comparably to MK-7264

Cough Response Study

Treatments (control, BLU-5937, MK-7264) were administered orally (p.o.) 2 hours prior to tussive agent exposure: citric acid (0.1 M, aerosol) and histamine (0.6 mM, aerosol); n=6 animals per group

* p<0.05
Time Course Study (Guinea Pig Cough Model)

BLU-5937 inhibits cough comparably to MK-7264 and for a similar duration.

Treatments (control, BLU-5937, MK-7264; 30 mg/kg) were administered orally (p.o.) 2 hours prior to tussive agent exposure: citric acid (0.1 M, aerosol) and histamine (0.6 mM, aerosol); tussive agent exposure at 2, 4, 6, 8 and 12 hours for BLU-5937; at 2 and 8 hours for MK-7264; n=6 animals per group.

*p < 0.05
MK-7264 alters taste; BLU-5937 does not.

Effect of BLU-5937, MK-7264 on Taste in Rats

Two Bottle Rat Taste Study

Treatments (control, BLU-5937, MK-7264) were administered ip: animals were water-fasted overnight and presented with one bottle water and quinine (0.3mM) at T_{max}; volume of liquid consumed measured for 15 minutes; $n=10$ animals per group.

* $p < 0.05$ vs control
Safety & ADME Profile Overview

<table>
<thead>
<tr>
<th>Safety Profile</th>
<th>ADME Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>No safety findings of concern</td>
<td>Projected BID dosing</td>
</tr>
<tr>
<td>• Good safety margin in 7 day toxicity studies (rat & dog)</td>
<td>• Good oral bioavailability</td>
</tr>
<tr>
<td>• No genotoxicity</td>
<td>• Elimination through metabolism</td>
</tr>
<tr>
<td>• Highly selective without off-target effect</td>
<td>• No drug interaction anticipated</td>
</tr>
<tr>
<td></td>
<td>• Very low brain permeability</td>
</tr>
</tbody>
</table>
Phase 1 Study Design

Key Objectives

Assess Safety

Assess Tolerability Including Taste Effect

Measure Drug Plasma Levels for Phase 2 Dosing

Single Ascending Dose
n=48 healthy adult subjects
5 cohorts of 8 subjects administered single dose
1 cohort of 8 subjects to assess taste effect

Multiple Ascending Dose
n=24 healthy adult subjects
3 cohorts of 8 subjects administered multiple dose BID for 7 days

Traditional design; assess safety, tolerability (including taste), drug levels
Phase 2 Proof of Concept Study Design

- N=36 unexplained/refractory chronic cough patients; >1 year coughing
- 6 sites in UK and 2 sites in US
- 4 dose levels escalated at 4-day intervals
- Endpoint: reduction in frequency of cough (cough recorder)
- Safety and tolerability assessment, including taste effect

Similar design to Afferent/Merck Phase 2 proof of concept
Development Milestones

<table>
<thead>
<tr>
<th>Q2 2018</th>
<th>Q3 2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Clinical Trial Application</td>
<td>Start Phase 1</td>
<td>Start Phase 2</td>
</tr>
<tr>
<td>Safety margins</td>
<td>Effect on taste</td>
<td>Effect on cough and taste</td>
</tr>
<tr>
<td>Starting dose for Phase 1</td>
<td>Safety/tolerability</td>
<td>Dose selection for Phase 3</td>
</tr>
<tr>
<td></td>
<td>Dose selection for Phase 2</td>
<td></td>
</tr>
</tbody>
</table>
Summary – BLU-5937

<table>
<thead>
<tr>
<th>In vitro</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>More potent and selective P2X3 inhibitor versus leading P2X3 antagonist</td>
<td>Cough: comparable efficacy and duration vs. leading P2X3 antagonist</td>
</tr>
<tr>
<td></td>
<td>Taste: no taste effect observed</td>
</tr>
</tbody>
</table>

Phase 1 (2018)
- Taste effect data in humans

Phase 2 (2019)
- Robust and efficient design

Strong and differentiated P2X3 drug candidate profile with efficient path to data