BLU-5937: A Selective P2X3 Antagonist With Potent Anti-Tussive Effect and No Taste Alteration

Denis Garceau, Ph.D.
June 27, 2018
Targeting P2X3 to Treat Chronic Cough with Potential No Taste Effect

P2X3 homotrimeric receptors are linked to cough hypersensitivity

P2X2/3 heterotrimeric receptors are linked to taste function

Hypothesis:
Selective inhibition of P2X3 homotrimeric receptors would reduce cough without impact on taste perception
P2X2/3 is Linked to Taste Function

• Both P2X2 and P2X3 channels are expressed in taste buds\(^1\)
• Almost all nerve in the fungiform papillae are double stained for P2X2 and P2X3\(^1\)
• Knockout of both P2X2 and P2X3 is required for taste loss in KO mouse\(^2\)

\(^1\)Ishida et al 2009; \(^2\)Finger et al 2005
P2X3 is Linked to Cough Hypersensitivity

Jugular C-fibers (expressing predominantly P2X3) innervating upper airways transmit cough sensitization signals to CNS

Kwong et al 2008: Single-cell RT-PCR analysis of 22 lung specific jugular neurons
BLU-5937: High Selectivity for P2X3 Provides Proof of Concept in Preclinical Models

Overview of Key Preclinical Studies with BLU-5937

- **Cell-based FLIPR assay**: >2000 more selective for hP2X3 vs. hP2X2/3
- **DRG neuron sensitization**: Blocks ATP mediated neuronal sensitization
- **Guinea pig cough model**: Reduces cough at concentration blocking P2X3 but not P2X2/3
- **Rat taste model**: No effect on taste

BLU-5937: Potential to reduce cough with no taste effect at targeted therapeutic dose
BLU-5937: Highly Selective for Human P2X3 Receptors

<table>
<thead>
<tr>
<th>BLU-5937</th>
<th>hP2X3 (IC$_{50}$)</th>
<th>hP2X2/3 (IC$_{50}$)</th>
<th>Selectivity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>α,β-me ATP 3 µM</td>
<td>11 nM</td>
<td>>30 µM</td>
<td>>2000</td>
</tr>
<tr>
<td>α,β-me ATP 30 µM</td>
<td>13 nM</td>
<td>>30 µM</td>
<td>>2000</td>
</tr>
</tbody>
</table>

Cloned hP2X3 and hP2X2/3 channels expressed in HEK295 cells; (Ca$^{2+}$ FLIPR)

- Potent antagonist of hP2X3
- Highly selective for hP2X3 vs hP2X2/3
- Not ATP-competitive
- No inhibition of other P2X channels
- Not agonist/antagonist of 159 targets tested
BLU-5937 Blocks ATP-Mediated DRG Neuron Sensitization

1. Inject current
2. Sensitize with ATP
3. BLU-5937
4. Control washout

Using current mode, patch-clamp recording in selected P2X3 expressing DRG neurons from rat
Guinea Pig (CA + Histamine) Cough Model

Total cough average

Histamine (0.6 mM)

Citric acid (CA) CA + 0.3 mg/kg CA + 3 mg/kg CA + 30 mg/kg

Control BLU-5937 NE0588

Treatments (control, BLU-5937, NEO588) were administered orally 2 hours prior to tussive agent exposure: citric acid (0.1 M, aerosol) and histamine (0.6 mM, aerosol); n=6 / group; *p<0.05 vs (CA + histamine); NEO588 (gefapixant)

BLU-5937 shows similar anti-tussive effect as NE0588, a non-selective gpP2X3 antagonist, at concentration that blocks P2X3 but not P2X2/3
BLU-5937 Reduces ATP Induced Cough Hypersensitivity

Guinea Pig (CA + ATP) Cough Model

BLU-5937 shows similar anti-tussive effect as NE0588, a non-selective gpP2X3 antagonist, at concentration that blocks P2X3 but not P2X2/3
BLU-5937 has no Effect on Taste in Rat Model

Rat (Quinine) Taste Model

Mean ± SEM; n= 10/group; * p<0.05 vs control

A weakly selective antagonist for rP2X3, inhibits taste

No taste effect

Treatments (control, BLU-5937, NEO588) were administered ip: animals were water-fasted overnight and presented with one bottle water and quinine (0.3mM) at T$_{max}$; volume of liquid consumed measured for 15 minutes; n=10 / group
BLU-5937: Drug-like Characteristics

- Good oral bioavailability
- Good metabolic stability in human hepatocytes or liver microsomes
 - Dose regimen predicted in man: twice a day (BID)
- Does not cross blood-brain barrier
 - No adverse effect on general behavior / neurological function in rat
- High safety margin in preclinical toxicity studies (rat & dog)
 - Main clinical sign: emesis observed in dogs at high doses (≥ 300 mg/kg/day)

BLU-5937 characteristics and animal proof of concept support moving into clinical studies
BLU-5937: Clinical Plan to Phase 2 Proof-of-Concept

Q3 2018 – Q4 2018
Clinical Phase 1
- Healthy Subjects
 - Tolerability (taste)
 - Dosing for Phase 2

H1 2019 – H1 2020
Clinical Phase 2
- Chronic Cough subjects
 - Efficacy
 - Tolerability (taste)
 - Dosing for Phase 3
BLU-5937: Conclusions

- Potent and highly selective hP2X3 homotrimeric receptor antagonist
- Reduces histamine and ATP-induced cough sensitization in the guinea pig cough model through P2X3 homotrimeric receptor inhibition
- No effect on taste perception at concentration that fully block P2X3 homotrimeric receptors in rat behavioral taste model
- It has excellent drug-like characteristics

BLU-5937 has the potential to inhibit cough hypersensitivity without affecting taste perception in chronic cough