Forward Looking Statements

NOTE:
Some of the statements contained herein may be forward-looking statements which involve
known and unknown risks and uncertainties. Without limitation, statements regarding potential
mineralization and resources, exploration results, and future plans and objectives of the
Company are forward-looking statements that involve various risks. The following are important
factors that could cause the Company’s actual results to differ materially from those expressed
or implied by such forward-looking statements: changes in the world wide price of mineral
commodities, general market conditions, risks inherent in mineral exploration, risks associated
with development, construction and mining operations, the uncertainty of future profitability
and the uncertainty of access to additional capital. There can be no assurance that forward-
looking statements will prove to be accurate as actual results and future events may differ
materially from those anticipated in such statements. North American Nickel Inc. undertakes no
obligation to update such forward-looking statements if circumstances or management’s
estimates or opinions should change. The reader is cautioned not to place undue reliance on
such forward-looking statements.
North American Nickel Inc. Capital Structure

<table>
<thead>
<tr>
<th>Listing</th>
<th>NAN:TSX.V</th>
<th>Cash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued and Outstanding:</td>
<td>122,154,885</td>
<td></td>
</tr>
<tr>
<td>VMS Owns</td>
<td>(33,589,704)</td>
<td></td>
</tr>
<tr>
<td>Sentient Owns</td>
<td>(36,552,399)</td>
<td></td>
</tr>
<tr>
<td>Warrants:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ $0.21 Owned by Sentient</td>
<td>8,276,199</td>
<td>$1.7M</td>
</tr>
<tr>
<td>@ $0.21 Owned by VMS</td>
<td>5,882,352</td>
<td>$1.2M</td>
</tr>
<tr>
<td>Greenland Warrants $1.00</td>
<td>12,960,000</td>
<td>$9.0M</td>
</tr>
<tr>
<td>@ $0.50, $0.70, &</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ $0.21 Per Private Placement Closed April 22, 2013</td>
<td>6,588,792</td>
<td>$1.4M</td>
</tr>
<tr>
<td>Options</td>
<td>7,883,000</td>
<td>$1.3M</td>
</tr>
<tr>
<td>Fully Diluted</td>
<td>173,745,228</td>
<td>$14.6M</td>
</tr>
<tr>
<td>Cash Position</td>
<td></td>
<td>$5.3M</td>
</tr>
<tr>
<td>52 Week High/Low</td>
<td></td>
<td>$0.12 – $0.30</td>
</tr>
</tbody>
</table>

Slide 3
Location

- Located on the southwest coast of Greenland, which is pack ice free year-round.
- Maniitsoq’s mild climate allows for all year round mining & shipping of concentrate.
- Greenland is a democratic, pro-mining country with a transparent regulatory system, competitive mining tax regime and no land claims issues.
Property

- Greenland’s capital, Nuuk, is 30 minutes by helicopter and provides European standard coastal re-supply and logistics facilities 4 to 6 hours shipping time to Maniitsoq coastline.

- Maniitsoq is a greenfields nickel sulphide exploration project with valuable by-products,

- NAN owns 100% of Maniitsoq via two contiguous exclusive mineral exploration licences covering 4,983 km².

- Maniitsoq has potentially both the scale and metal endowment to be the world’s next nickel sulphide province.
Maniitsoq Ni-Cu-Co-PGM Project
South West Greenland

Investor Risk Mitigation

✓ Management is a proven mine development team – VMS Ventures;
✓ NAN has a strategic investor: The Sentient Group;
✓ Technical team uses best practices to minimize exploration risk;
✓ Secure political jurisdiction supported by pro-mining government;
✓ Company is focused on “building the business” of developing Maniitsoq;
✓ Corporate costs are lean with investors funds put into the project;
✓ Historic exploration data and drill core recovered by to NAN
✓ Maniitsoq’s geology is exemplary for district scale nickel potential:
 ✓ Abundance of Ni-Cu sulphide occurrences at surface & in drilling;
 ✓ High Nickel tenor – consistent and economic grades;
 ✓ Major, long lived structures; and
 ✓ Large-scale mafic igneous event associated with meteorite impact
✓ Modern helicopter “terrain hugging” surveys optimal for Maniitsoq’s
topography and mineralisation immediate success >100 EM anomalies
Why Maniitsoq?

- The Nickel sulphide mineralisation is either at "surface or near surface";
- Maniitsoq is “High Grade Nickel sulphide” with valuable by-products;
 Spotty Hill “NAN 2012” DDH MQ-12-005 from 41m below surface:
 123.94 m @ 0.81% Ni, 0.21% Cu, 0.03% Co & 0.26 g/t PGM
 Including 24.20 m @ 1.75% Ni, 0.34% Cu, 0.06% Co and 0.52 g/t PGM
 Imiak Hill “NAN 2012” DDH MQ-12-002 from 4m below surface:
 66.08m @0.55% Ni, 0.2% Cu & 0.02% Co.
 Including 14.18m @ 1.33% Ni, 0.38% Cu and 0.04% Co
- Maniitsoq’s “large true width” sulphide mineralisation can be greater than 50 meters true thickness depending on location;
- Maniitsoq has “district scale potential” with 75km of Ni sulphide showings;
- All mineralisation intercepted can be “considered open”; and
- Maniitsoq could ship via Panamax sized vessels “Ni-Cu-Co & PGM concentrates” from the adjacent deep water coast all year round.
Historical Work

- **Danish explorers, 1962 to 1973**: extensive mapping, prospecting defining the trend and shallow diamond drilling (average hole length <55 m), no subsurface geophysical modelling to orientate drilling but some success: Imiak Hill: 9.85 m @ 2.67% Ni and 0.60% Cu

- **Cominco & Falconbridge, 1993 to 2000**: Cominco flys extensive fixed wing time domain EM unsuited to undulating terrain and hampered by flight path

 Falconbridge completes surface magnetic and EM surveys plus extensive high quality re-analysis of historical core that confirmed historical high-grade assays and establish Maniitsoq nickel tenor.

- **Neither Cominco nor Falconbridge drill targets**
Regional Geological Setting

- Located near northern edge of the Archean (3.8 – 2.55 Ga) North Atlantic Craton of southern Greenland.
- The North Atlantic Craton correlates with the Nain province in Labrador.

Geological map of Greenland (GEUS).
Project Geology

- Retrogressed 3.4 – 2.9 Ga granulite facies gneisses intercalated with supracrustal rocks (amphibolites of volcano-sedimentary origin). The supracrustal rocks occur in belts up to 6 km wide folded into dome and basin patterns.

- Meteorite Impact: A distinctive mass of finely crushed and homogenised quartzo-feldspathic material, previously mapped as granitic gneiss and now referred to as the Finnefjeld Domain, has recently been interpreted to represent the core of a deeply eroded Archean age (~3.0 ga) impact structure (Garde et al., 2012).

- Ni-Cu-Co-PGM mineralization is hosted by noritic and related mafic-ultramafic intrusions (shown in purple on the adjacent map). These intrusions represent contaminated, mantle-derived, nickel-rich, ultramafic magma emplaced in a conduit system, possibly triggered by the impact.

Nickeliferous norite intrusions are concentrated in, but not exclusive to, an arcuate belt 75 km long by 15 km known as the Greenland Norite Belt that wraps around the east and south margins of the Finnefjeld Domain.

Individual norite bodies range in size from several square meters to 8 km².

Pronounced northeast trending faults apparent in the regional aeromagnetic and topographic data appear to have controlled the emplacement of the nickeliferous norites at ~3.0 Ga, Proterozoic mafic dykes as well as three 3 episodes of lamprophyre intrusion (1800, 1200 and 600 Ma) with the latest involving emplacement of kimberlite and the intrusion of the Qaqarssuk carbonatite complex at 165 Ma.
Distinct Appearance

- Rounded hills covered with brownish-grey, often rusty, coarse gravel.
- Multi-phase: compositions range from quartz diorite, through norite, to lherzolite. Gabbronorite is most common.
- Magmatic and cumulus textures often well preserved. Locally pyroxenes are partially or completely replaced by hornblende.

Post Kinematic

- Massive, little or no foliation except at margins.
- Contacts often crosscut country rock foliation.
Norite Intrusions (continued)

- Norite belt is the result of a dynamic magma conduit system;
- Country rock xenoliths or “exotic inclusions” are common within the norites.
- Hybrid margins are common.
- Layering is rare.
Sulphide Mineralization

- Consists of monoclinic pyrrhotite, pentlandite, chalcopyrite and pyrite.
- Often coarse-grained.
- Likely to produce a clean concentrate.
- Inclusion-bearing sulphide (i.e. sulphide breccia) is a common texture.
Deposit Model

- Mantle melting perhaps in response to a giant impact.
- Hot ultramafic magma flows to surface through a “conduit system” comprised of restricted conduits and larger magma chambers.
- Hot magma assimilates country rock (locally sulphidic) resulting in sulphur saturation and production of a sulphide liquid.
- Ni+Cu+Co ± PGE sulphide collects in zones of lower velocity within the conduit system.
- Continual magma flow upgrades the nickel tenor of sulphide already deposited.
- Magmatism eventually ceases and conduit system is preserved as noritic rock.
- Over time, uplift and erosion expose parts of the magma conduit system and some of the Ni+Cu+Co ± PGE sulphides.

Modified after Maier et al., 2001
North American Nickel’s Work

2011 – Laying the groundwork and testing the technology
✓ Identified Maniitsoq as favourable for nickel sulphide deposits and acquired large land position.
✓ Compiled all geological and historical exploration data in digital GIS format.
✓ Located key historical showings and drill holes in the field.
✓ Tested effectiveness of helicopter TEM by flying terrain-hugging helicopter EM survey over selected areas:
 25 new conductors detected

2012 – Confirmation and discovery
✓ Acquired additional ground based on positive 2011 results.
✓ Completed helicopter TEM and magnetic surveys of high priority areas (totaling 860 km²): over of 50 new conductors detected.
✓ Commenced checking conductors on the ground.
✓ Drilled nine holes totaling 1,551 m to test conductors in three areas; made significant, multi-element intersections at two areas and encountered anomalous mineralization at the third.
✓ Geological Survey of Denmark and Greenland identified independently Maniitsoq meteorite impact site within NAN’s tenements.
Maniitsoq Ni-Cu-Co-PGM Project
South West Greenland

Helicopter TDEM

- Total of 5,746 line-kilometers of helicopter borne SkyTEM / VTEM covering approximately 860km² mainly focused on the Greenland Norite Belt (GNB) but small survey also flown over the Pingo showing (about 15 km to the northwest of the GNB).
- Nominal flight line spacing of 200 to 100 meters.
- 102 conductive zones recognized to date.
- Map shows total magnetic intensity reduced to pole and electromagnetic anomaly picks over the GNB.
- The resulting identified conductors are 3 dimensionally modeled, providing low risk sub surface drill targets that returned significant drill intercepts.
Maniitsoq Ni-Cu-Co-PGM Project
South West Greenland

2012 Drill Program

1,551 METERS in 9 HOLES in 3 AREAS

- VTEM conductor P-55 tested Spotty Hill intercepts:
 - 1.00% Ni eq* / 123.94 m incl. – 2.12% Ni eq* / 24.20 m
- VTEM Conductor P-54 tested Imiak Hill intercepts:
 - 1.18% Ni eq* / 26.98 m incl. – 1.60% Ni eq* / 16.64 m
- VTEM conductors P-58 & P-59 tested at Fossilik II:
 - Anomalous mineralization and off hole BHEM conductors (possible future drill target).

* Ni eq = Ni equivalent calculated based on spot prices for Ni, Cu, Co, Pd and Pt on Jan. 27, 2013.
Spotty Hill Drilling

PURPOSE:
To test a near vertical, pipe-like VTEM conductor (P-55) topping out 40 meters below surface. Shallow historical holes nearby intersected weakly mineralized norite (best assay 15.70 m @ 0.47% Ni, 0.23% Cu.)

RESULTS: DISCOVERY!
123.94 m of high grade sulphides in hole MQ-12-005.
119 m of anomalous mineralization in hole MQ-12-009, which was drilled outside the conductor 75 m NW of MQ-12-005.

Significant 2012 Drill intersections from Spotty Hill

<table>
<thead>
<tr>
<th>Hole Number</th>
<th>From (m)</th>
<th>To (m)</th>
<th>Length (m)</th>
<th>Ni (%)</th>
<th>Cu (%)</th>
<th>Co (%)</th>
<th>Pt (g/t)</th>
<th>Pd (g/t)</th>
<th>Au (g/t)</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQ-12-005</td>
<td>41.36</td>
<td>165.30</td>
<td>123.94</td>
<td>0.81</td>
<td>0.21</td>
<td>0.029</td>
<td>0.12</td>
<td>0.11</td>
<td>0.03</td>
<td>2.91</td>
</tr>
<tr>
<td>Incl.</td>
<td>117.80</td>
<td>142.00</td>
<td>24.20</td>
<td>1.75</td>
<td>0.34</td>
<td>0.057</td>
<td>0.22</td>
<td>0.25</td>
<td>0.05</td>
<td>6.30</td>
</tr>
<tr>
<td>Incl.</td>
<td>117.80</td>
<td>126.00</td>
<td>8.20</td>
<td>2.39</td>
<td>0.21</td>
<td>0.069</td>
<td>0.28</td>
<td>0.30</td>
<td>0.02</td>
<td>7.44</td>
</tr>
<tr>
<td>MQ-12-009</td>
<td>8.00</td>
<td>127.00</td>
<td>119.00</td>
<td>0.17</td>
<td>0.03</td>
<td>0.011</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.43</td>
</tr>
<tr>
<td>Incl.</td>
<td>61.00</td>
<td>73.56</td>
<td>12.56</td>
<td>0.26</td>
<td>0.06</td>
<td>0.015</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Imiak Hill Drilling

PURPOSE:
To drill EM anomalies associated with mineralization perpendicular to strike.

RESULTS:
Significant multi-element intersections in holes MQ-12-001 and MQ-12-002.

2012 drill results, combined with bore-hole EM (BHEM) surveys and historical drill information, indicate mineralization strikes N-S, dips vertically to steeply east, plunges south and is open at depth.

Historical Intersections

<table>
<thead>
<tr>
<th>Number</th>
<th>Intersection</th>
<th>Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.85 m @ 2.67% Ni, 0.60% Cu</td>
<td>Im-9</td>
</tr>
<tr>
<td>2</td>
<td>9.11 m @ 1.75% Ni, 0.40% Cu</td>
<td>Im-8</td>
</tr>
<tr>
<td>3</td>
<td>1.00 m @ 2.56% Ni, 0.21% Cu</td>
<td>Im-5</td>
</tr>
<tr>
<td>4</td>
<td>4.88m @ 1.10% Ni, 0.27% Cu</td>
<td>Im-4</td>
</tr>
<tr>
<td>5</td>
<td>5.47 m @ 1.49% Ni, 0.44% Cu</td>
<td>Im-4</td>
</tr>
<tr>
<td>6</td>
<td>2.85 m @ 2.38% Ni, 0.26% Cu</td>
<td>Im-4</td>
</tr>
<tr>
<td>7</td>
<td>14.50 m @ 1.00% Ni, 0.41% Cu</td>
<td>R-2</td>
</tr>
<tr>
<td>8</td>
<td>37.51 m @ 0.80% Ni, 0.20% Cu</td>
<td>Im-3</td>
</tr>
<tr>
<td>9</td>
<td>5.51 m @ 1.17% Ni, 0.24% Cu</td>
<td>Im-2</td>
</tr>
</tbody>
</table>

MQ-12-001
26.98 m @ 0.98% Ni, 0.44% Cu
Incl. 16.64 m @ 1.36% Ni, 0.52% Cu
and 5.12 m @ 2.20% Ni, 0.55% Cu

MQ-12-002
66.08 m @ 0.55% Ni, 0.20% Cu
Incl. 5.15 m @ 1.22% Ni, 0.49% Cu
and 14.18 m @ 1.33% Ni, 0.38% Cu
Imiak Hill Long Section (Looking West)

- Bore hole EM (BHEM) modeled conductor plates show a clear trend / plunge of about 45-50 degrees south.
- BHEM results also indicate the mineralization is open below the deepest hole on the trend (historical hole Im-9), which intersected 9.85 m @ 2.67% Ni and 0.60% Cu 140 meters below surface.
- Strongest BHEM anomaly (Step Response type) is seen in hole MQ-12-003.

MQ-12-001
26.98 m @ 0.98% Ni, 0.44% Cu
Incl. 16.64 m @ 1.36% Ni, 0.52% Cu and 5.12 m @ 2.20% Ni, 0.55% Cu

MQ-12-002
66.08 m @ 0.55% Ni, 0.20% Cu
Incl. 5.15 m @ 1.22% Ni, 0.49% Cu and 14.18 m @ 1.33% Ni, 0.38% Cu

Legend
- NAN 2012 pierce point
- Historical pierce point
- Interpreted BHEM model plate
PURPOSE:
To test VTEM conductor P-58 associated with the Fossilik II gossan and mineralized historical drill holes Foll-1 and 2. Also to test VTEM conductor P-59 located 250 m NW of Fossilik II.

RESULTS:
Anomalous mineralization intersected 40 m beneath historical Fossilik II drill holes. BHEM data indicates mineralization is not extensive. Conductor P-59 was not intersected. BHEM indicates top of VTEM conductor is deeper than originally interpreted. Deeper drilling may be warranted.

Surface Plan Map
Exploration Plans for 2013/2014

Diamond Drilling (3000 m minimum)

Targets include:

- Imiak and Spotty Hill high-grade zones along strike and down plunge of 2012 drill holes. Priority will be high conductivity Step Response seen from hole MQ-12-003.
- BHEM conductors at Fossilik II.
- High conductivity VTEM EM responses (e.g. P-63 as detailed in NAN NR dated March 20, 2013).
- Other VTEM EM responses associated with mafic-ultramafic intrusions and/or historical Ni-Cu showings.

Field Mapping and Sampling

To ground truth and sample VTEM anomalies and zones of disseminated mineralization exposed on surface.
Exploration Plans for 2013/2014

Surface Geophysics (IP and/or Pulse EM)

- Induced Polarization (IP) to delineate disseminated sulphide mineralization at Spotty Hill, Imiak Hill and other showings (e.g. Nunanguit).
- Pulse EM to locate and/or better define deeper conductors prior to drilling. Will utilize bore hole EM transmitter to reduce cost.

Other Studies

- Mineralogical, petrographic and preliminary metallurgical (QEMScan) evaluation of Maniitsoq sulphides and host rocks.
- Initiate environmental scoping plan in preparation for future environmental baseline studies.
Directors and Management

Rick Mark, M.Ed (Admin) - CEO & Chairman: Rick has over 23 years experience in the public market place. He is also the CEO & Chair of VMS Ventures Inc. (VMS:TSX.V), and Harvest Gold Corporation (HVG-TSX.V), a December 2005 "spin off" from VMS, and is the President and CEO of Pancontinental Uranium Corp. (PUC-TSX.V).

Mark Fedikow, HBSc., M.Sc., Ph.D., P.Eng., P. Geo., C.P.G. – President & Director: Mark has 34 years of industry and government experience as an exploration geochemist and mineral deposits geologist. He was the Chief Geologist of the Mineral Deposits Section in Manitoba. In 2001, Mark was the recipient of the Provincial Geologists Medal, a Canadian national award for outstanding geoscientific achievement. He is also the Vice President of Exploration and Technical Services of VMS Ventures Inc.

Neil Richardson, P. Geo. – COO: Neil has over 22 years experience in mineral exploration and mining operations of base metal and precious metal deposits throughout Canada. Mr. Richardson most recently the Manager of Exploration for Murgor Resources Inc. where he was responsible for delineation of two projects to National Instrument 43-101 compliant mineral resource estimates, project generation, process discipline and corporate growth strategies.

John Pattison, P. Geo., B.Sc. – Chief Geologist: John has extensive experience in base metal exploration, in particular, nickel sulphide deposits. His career extends from the nickel camps of Canada to southern Africa. From 1983 to 2002, John worked with Falconbridge Limited and associated companies where he was responsible for managing base metal, PGE and gold exploration projects.
Directors and Management

James Sparling, B.Sc., MBA, P.Geo. – Project Manager: Mr. Sparling has broad experience in base metal and gold exploration including Komatiite intrusion-hosted nickel deposits. Prior to joining NAN, he worked in various senior managerial roles for a number of resource development companies from 2003 to 2012. He worked as a Project Geologist, Geophysical Crew Chief and Senior Exploration Geologist with Hudbay Minerals Inc. from 1994 to 2003.

Gilbert Clark, B.Sc (Geology) – Director: Mr. Clark is a European based Geologist with more than 13 years of industry experience; principally in mining and international resource developments. Since 2010, Mr. Clark has been involved in private equity investments and appraisals primarily in the mining and energy sectors. He is currently an Investment Advisor with The Sentient Group, an independent private equity investment firm specializing in the global resources industry.

James Clucas - Director: Mr. Clucas was Chief Financial Officer of Inco's Canadian operations until 1984 and has been involved in the development of several mineral deposits, including the Snow Lake Mine (High River Gold Mines), Montana Tunnels (Pegasus Mining) and the Fenix Project (HudBay Minerals Inc.). He was the founder of International Nickel Ventures Inc. which acquired and developed the Santa Fe/Ipora Nickel Laterite deposit in Brazil.

Douglas Ford - Director: Since 1987 Mr. Ford has worked in the public markets, serving as CFO and board member of a number of junior companies with direct responsibility for all financial reporting, corporate finance and compliance activities.
Directors and Management

Edward Ford – Director: A Chartered Accountant, Mr. Ford is a leading specialist in all aspects of venture capital and bridge financing, with more than 40 years of experience creating and implementing financial development plans for client enterprises in Canada and the United States. Edward Ford has designed and managed a wide range of public marketing financing arrangements, private placements, investment syndicates and tax shelter instruments to fund the growth programs of client companies.

Advisors

John Rowntree, Hons B.Sc., FAusIMM, CIMM: John Rowntree has 46 years experience in the minerals exploration industry. He has been a founding director of several public exploration companies and has been responsible for property acquisition and for directing exploration leading to the discovery of economic gold, tantalum, uranium, platinum, copper/gold and TVM iron deposits in Australia and Greenland.

John Ferguson, Ph.D., D.Sc., FAusIMM & Life Fellow Geological Soc. S. Africa: John Ferguson has been involved in the minerals industry, academia and four geological surveys for the past 50 years. He has conducted extensive exploration activities in several continents particularly focusing on gold, base metals, platinum group elements, iron ores, uranium, rare earth elements & diamonds. He has held positions as founding director of publicly listed companies, Professor/Reader at the University of the Witwatersrand and Division Head/Acting Director at the Bureau of Mineral Resources Geology & Geophysics, Canberra (now Geoscience Australia). Other survey appointments include working for the Greenland Geological Survey and as a NRC Fellow at the Geological Survey of Canada. He was responsible for the discovery of the platinum group metals resource at Munni Munni, Western Australia as well as the discovery of kimberlites and industrial minerals in southern Africa and Greenland.
NORTH AMERICAN NICKEL INC
TSX V: NAN

FOR MORE INFORMATION
PLEASE VISIT
www.northamericannickel.com